Skip to content

Introduction to Data Science 2

Teaching

Marc Evrard

Class hours

  • Lectures : Friday, 1:30 pm to 3:00 pm (apr-mai)
  • Practical (group 3) : Wednesday, 1:30 to 3:30 (apr-mai)
  • Practical (groups 1 et 2) : Thursday, 1:30 to 3:30 (apr-mai)

Prerequisites

Basic probability and statistics, basic algebra, programming experience

Preparing to

Introduction to Machine Learning

Plan

Part Course Practical
1 Introduction & Definitions
2 Exploratory Analysis Python & JupyterLab
3 Exploratory Analysis NumPy & Matplotlib
4 Machine Learning Pandas
5 Machine Learning Scikit-Learn
6 Project Project
7 Project Project

Assessments

100% Continuous evaluation

  • Session 1: 30% Quizzes + 70% Project
  • Session 2: 100% Improved Project